

Yuxiang Wan

📍 University of Illinois Urbana-Champaign

✉️ ywan18@illinois.edu

🌐 Website

LinkedIn

GitHub

Education

University of Illinois at Urbana-Champaign , B.S. in Computer Engineering GPA: 4.00/4.00	Sep. 2023 – May 2027
Zhejiang University , B.E. in Electrical and Computer Engineering 3.955/4.0, Rank: 1/70	GPA: Sep. 2023 – May 2027

Research Experience & Interest

My research interests lie in improving the **reasoning and generalization capabilities of large language models**, with a focus on structured knowledge integration (e.g., graph-based representations) in in-context learning. Motivated by this experience, I am increasingly interested in the systems challenges behind scaling such models, particularly **efficient inference and ML systems support for interactive settings such as reinforcement learning and multi-agent learning**.

Research Intern , AI-Net Lab, Zhejiang University Advisors: Yifei Sun, Yang Yang	Jun. 2024 – Apr. 2025
○ Conducted a systematic literature review on in-context learning and graph-based representation learning, leading to the formulation of a graph-structured example selection framework.	
○ Designed and implemented experiments: leveraged graph structures and PageRank-based example selection with multi-level encoding (node, path, subgraph), achieving 2.74% improvement over SOTA	
○ Drafted and revised a research paper; conducted extensive experiments and analysis during rebuttal.	

Projects

ECE 391: UNIX-like Operating System Kernel	<i>C, RISC-V Assembly</i>	<i>Fall 2025</i>
○ Built a UNIX-like OS kernel on RISC-V from scratch: implemented Sv39 virtual memory (3-level page tables, demand paging), process abstraction (fork, exec), and preemptive multitasking with round-robin scheduling		
○ Developed VIRTIO block device driver and KTFS filesystem with 64-block write-back cache, supporting CRUD operations, indirect/doubly-indirect block addressing, and persistent storage		
○ Implemented 15+ system calls (fork, exec, read, write, pipe, etc.) and a functional shell with I/O redirection and piping; wrote Unix utilities (cat, ls, wc, xargs) for command-line interaction		

Selected Honors and Awards

2024, 2025	National Scholarship , Ministry of Education of China (Top 1%)
2024, 2025	Dean's List , University of Illinois at Urbana-Champaign
2025	First Prize Scholarship for Academic Excellence , ZJUI
2021, 2022	First Prize , China Southeast Mathematical Olympiad (CSMO)

Selective Coursework

○ CS 225: Data Structures (A+)	○ CS 411: Database Systems (A)
○ ECE 391: Computer Systems Engineering (A+)	○ ECE 310: Digital Signal Processing (A+)
○ ECE 313: Probability with Engrg Applic (A+)	○ ECE 498: Deep Generative Models (A+)

Teaching Experience

Teaching Assistant , ECE 220: Computer Systems & Programming	<i>Spring 2025</i>
---	--------------------

- Led office hours and discussion sessions for 300+ students; provided guidance on C programming and debugging
- Refactored and automated autograder scripts, reducing grading time and improving feedback efficiency

Teaching Assistant , MATH 257: Linear Algebra	<i>Fall 2024</i>
--	------------------

- Conducted weekly problem-solving sessions for 100+ students; organized comprehensive final review session